ProGATE GATE Coaching
https://t.co/pY1sQ9Fc3k

https://t.co/pY1sQ9Fc3k

by ProGATE Andheri

Posted on July 29, 2016 at 08:39 AM

Linking superatoms to make molecules to use as building blocks for new materials

July 27, 2016 by Bob Yirka report
Linking superatoms to make molecules to use as building blocks for new materials
Credit: Nano Letters (2016). DOI: 10.1021/acs.nanolett.6b02471

(Phys.org)—A team of chemists at Columbia University in New York has for the first time linked together superatoms to make new types of molecules. As they note in their paper published in the journal Nano Letters, the technique may be used in the future to create unique materials with applications in magnetics and electronics.

Superatoms are actually clusters of that appear to exhibit many of the same properties as elemental atoms (their electrons form a shell around a middle core), but because they are made of many particles they can have their properties changed by changing their parts—which makes them ripe for experimentation. In this new effort, the researchers have built very simple molecules using just two or three superatoms suggesting that it might be possible to create exotic materials from them.

Superatoms are generally created by heating material that causes vapor to form—as the vapor cools, the atoms condense naturally to form superatoms in magic number combinations. Prior efforts to create molecules from them have generally involved taking advantage of self-assembly processes and because of that have not been systematic.

In this new effort the team configured their super-atoms with a core of eight selenium atoms and six . Then they added ligands from several other atoms to serve as a means to bond the atoms together (because their surface was well defined) resulting in triatomic or diatomic molecules. The idea, the researchers suggest, is to learn more about the ways such molecules can be made in order to create something that is superior to the individual pieces. They report that the super-atoms can be made to bond in ways very similar to traditional atoms and that they were able to replace the carbonyl groups used initially with phosphine moieties or isocyanide, which made it possible to regulate the length and type of chemical bridges that were forged. They expect that any future materials made from the new kinds of molecules will be conductive, magnetic or both—and that they will be customizable.

The group has plans to build larger while tinkering with their properties to see what sorts of might be made from them.

Read more at: http://phys.org/news/2016-07-linking-superatoms-molecules-blocks-materials.html#jCp


About the Author